BUILDING ON SUCCESS
The Past and the Present of Industrial Technology at Ohio University

11/5/07
Produced by the
Department of Industrial Technology
125 Stocker Center
Russ College of Engineering and Technology
Ohio University
Athens, Ohio 45701-2979
(740) 593-1455
Fax (740) 593-9382

http://www.ohio.edu/industrialtech
BUILDING ON SUCCESS

the past

Industrial Technology at Ohio University 5
The McLaughlin Era 7
The Kinison Era 13
The Paige Era 14
The Perry Era 17
The Squibb Era 21
The DiLiberto Era 23
The Creighton Era 24
The Fales Era 25
Continuous Improvement 26
The Center for Automatic Identification 29
Dean’s Perspectives 30
Outstanding Awards 31

the present

The Klein Years 35
Industrial Advisory Board 38
IT Support Staff 47
Faculty Profiles 48
Recent Past Employees 58
Generous Benefactors 59

research, text and design

Jessica Baisden, Mary Gallagher, Shangrila Joshi, Heidi Sacko,
Sharon Knueve, Ann Taylor, Jonathan Leal, Colleen Schmidt,
Dan Pittman, Danny Turner, James Fales, Deva Stern, Courtney Wilson

photos

Rick Fatica
Helen Gray
Len Huffman
Mahn Center for Archives & Special Collections,
Ohio University
Welcome!

Greetings to alumni, parents, employers and friends:

The Department of Industrial Technology has a rich history of preparing students to function in the real world. Changes in faculty, buildings, and hardware are spread out over more than 100 years. Thus, we take a moment to stop and reflect on where we’ve been and where we’re going.

That’s what this booklet is all about. Here, we celebrate and remember the people and events that have made us who we are today. I hope you enjoy your reading as much as we have enjoyed putting this history together.

Dr. Pete Klein

Chair, Department of Industrial Technology

You can be part of our future development and continued success through a donation to the department, whether it is through money, materials, equipment, or more. If you would like to contribute to IT financially, you must designate your gift to Industrial Technology or your donation will not reach the department.
Industrial Technology

The Industrial Technology program at Ohio University has a rich history of preparing graduates for careers in business and industry. IT grads enjoy a high rate of success in their careers because they have:

- **Been prepared as a technical generalist.** That means they know about a wide variety of technical subjects rather than some narrow specialty.
- **Hands-on lab experience.** Nearly all IT courses require 50% - 80% of scheduled time to be spent in lab activities using real-world materials and equipment.
- **A minor in business.** The required core of business/management courses provides the necessary background needed in today's business environment.

Employment Information

Industrial Technology graduates go to work for large international companies as well as small companies. Typical starting job titles include Manufacturing Engineer, Project Engineer, Quality Engineer, Application Engineer, Production Supervisor and Sales Engineer.

Typical job functions include analyzing and defining work processes, helping to develop prototype parts, designing fixtures and special machine setups, supervising facilities modifications, testing parts and products, selling to and assisting industrial customers and supervising quality assurance programs and production operations.

The typical career path of an IT graduate includes positions of increasing responsibilities leading to job titles such as department manager, vice president and president/CEO.

The program has been continuously accredited by the Board of Accreditation of the National Association of Industrial Technology since 1978.
EWING HALL: Named for Thomas Ewing, Ohio University’s first graduate, this hall was built in 1897 and used for the industrial arts program. It was demolished in 1974. The view seen here is from South Court Street.
The birth of a program: The McLaughlin era

George McLaughlin, 1912-1938

On May 11, 1886, the Ohio General Assembly appropriated $5,000 to establish a State Normal Department at Ohio University. Sixteen years later, President Alston Ellis expanded the department to a full college. The college was to coordinate existing courses of instruction with theoretical and practical training (then called manual training) for all students becoming teachers. Drawing and elementary manual training were made a priority in school courses of study because they were thought to be extremely valuable.

FLASHBACK

The Founding of Ohio University

The year: 1804. The place: Columbus. The people: the Ohio General Assembly. In this historic year, Ohio University’s charter was approved. The university was up and running. Practically since its inception, Ohio University has had a strong track record of supporting engineering and technology. The first classes in the subject date to 1824. In 1891, a series of electrical engineering courses were offered. Throughout the early 20th century, more courses began to emerge, and the field of industrial technology slowly took shape. In 1956, the department boasted its first graduate. Since then, nearly 2000 people have graduated from IT.

This would prepare them for skilled jobs and would benefit the community. Thirteen boys aged 12 to 14 paid five dollars each for the six-week class. The boys’ fee was the only payment McLaughlin received. But he was not one to complain. “He loved it, he absolutely did,” said his daughter, Helen Gray. He held the class in a large abandoned boiler room in Ewing Hall, where his assortment of equipment included one bench and a few planes, hammers, saws, squares, and chisels.

McLaughlin taught similar classes each summer until 1910. In the fall of 1906, classes in woodworking, pattern-making, and machine shop were organized in connection with the engineering department to enable students to teach a few manual training courses in high schools. In compliance with earnest demands from all parts of the state for teachers of manual training, the State Normal College began offering a two-year course in the field in 1911.
BUILDING ON SUCCESS

A Manual Training Department was established in the fall of 1912, with McLaughlin and C. Williamson as instructors.

FIRST CLASS: McLaughlin organized the first woodworking class in 1904. This class set a precedent for many others that led to a Manual Training Department in 1912.

The department’s equipment

The shops of this department originally occupied two large rooms on the lower floor of Ewing Hall. The hall was a Victorian-style building constructed in 1897 that housed art rooms, classrooms, and various administration offices. The building sat atop the hill behind Carnegie Library (now Scripps Hall) until the structure was demolished in 1974.

The woodworking shop was housed in a well-lit, 60-foot-square room. The equipment included:
- Twenty individual benches, fitted with quick-acting vises, and other necessary tools
- A large number of general tools
- Benches for metal work and necessary equipment
- Cases for displaying finished work
- Lockers for all students

FLASHBACK

Early Courses

Some of the earlier courses offered within IT included:
- Woodworking
- Bench work
- Joinery
- Wood-finishing
- Wood turning
- Cabinet making
- Pattern making
- Machining
The other room was a 20-by-50 foot machine shop, which contained:

- Five engine lathes
- One machine drill press
- A drilling lathe
- One circular saw
- One jointer
- Wood lathes
- A miter saw
- One power hacksaw
- An emery grinder
- Benches fitted with vises
- A cut-off saw
- One grindstone
- A universal wood trimmer
- Wood clamps

The machines were driven from a common counter-shaft, which in turn was powered by a five-horsepower motor.
The department grows

On June 18, 1914, Wilbur Williams of Plainfield received the first two-year manual training diploma. On the same day, McLaughlin received his bachelor’s degree in engineering education. By 1916, the department had expanded to four rooms in Ewing Hall, and McLaughlin had become a professor of manual training. Also that year, Dow Grones received a two-year degree in manual training and became an instructor in the department, replacing Williamson.

In 1920, the Manual Training Department’s name was changed to the Industrial Education Department. Later, in 1922, the first two women, Millicent Blackburn of Malta and Marion Hagely of Delaware, received two-year degrees in industrial education. Only two-year courses were offered until 1921-22, when the State Normal School of Ohio University became the College of Education. This led to the establishment of a four-year course leading to a bachelor’s degree in industrial education.

SUPER HALL: Named for Charles Super, a former Ohio University president, the hall was built in 1926. Over the years, the building housed various engineering and science departments until it was eventually torn down in 1976.

In 1923, the state Legislature appropriated $200,000 for the construction of a building to house the Departments of Engineering and Manual Training. Super Hall was built at the corner of Richland Avenue and President Street and named in honor of Dr. Charles Super, a former president of Ohio University (1883-96, 1899-1901). The new building was completed in February, 1926. It housed the Departments of Civil Engineering, Electrical Engineering, Industrial Education, and Printing.
Student organizations begin

In 1928, a group of 21 students met and organized the Industrial Arts Club. McLaughlin agreed to serve as advisor, and Charles Kinison, who joined the Industrial Education Department as an assistant professor in 1928, helped organize the club. Its purposes were to promote cooperation among prospective teachers of industrial arts, to foster a spirit of fellowship, and to advance the interchange of useful information and ideas. Professors gave lectures, industrial corporation films were shown, and a club magazine called Chips and Splinters was published by students enrolled in printing classes. Pi Sigma (for progress and science), a local industrial education fraternity, was formed in 1931. In 1934, Pi Sigma was recognized as a Lambda chapter of Epsilon Pi Tau, a professional honorary society, which still exits at Ohio University.

More changes

In 1935, President Herman James organized Ohio University around five degree-granting colleges. Two of the colleges — Liberal Arts and Education — had begun to duplicate efforts, and James was not alone in thinking that regrouping was necessary. The College of Applied Science included the School of Home Economics as well as the Departments of Civil Engineering, Electrical Engineering, Agriculture, and Industrial Education, now renamed Industrial Arts. At this time, the Industrial Arts Department offered courses for students in other colleges at both the undergraduate and graduate levels.
McLaughlin’s death

The year 1938 was marked by McLaughlin’s death of cancer at age 61. “He is well remembered for his caring and helpfulness,” said his daughter, Helen Gray. He would often buy the projects his students made, such as cookie cutters and puzzles, because they didn’t have the money to pay for materials. Gray and her mother, Alberta McLaughlin, established a scholarship in McLaughlin’s memory. When Stocker Center was dedicated in 1986, a seminar room was named for McLaughlin.

Strangely enough, the Manual Training Department almost never happened. After receiving his associate’s degree in 1901, McLaughlin was offered a job at Westinghouse in Pittsburgh, Penn. “It was a hard choice because the salary was so much more than teaching,” Gray recalled. “But he liked Athens and he liked teaching, so his philosophy was to stay.” In his first year of teaching, McLaughlin made $75 a month. He worked as an electrician in the coal mines in the summers to supplement his income. When he died in 1938, he was a full professor and his salary was $4,500 a year.

FLASHBACK
1936 Course Offerings

When Industrial Education became part of the College of Applied Science in 1936, it was renamed Industrial Arts. The courses taught in 1936 reflected the nature of the industry at that time. Courses offered in 1936 included:

- Woodworking
- Wood turning and finishing
- Sheet metal
- General and machine shops
- Cabinet making
- Pattern, forge, and foundry work
- Home mechanics
- Automobile mechanics
- Printing
Growth and change: The Kinison era

Charles Kinison 1938-50

After George McLaughlin’s death in 1938, Illinois native Charles Kinison took over as Chairman of Industrial Arts. Kinison had spent 20 years as a teacher and principal in the Illinois public schools and was brought to Ohio University in 1928 to develop the graphic arts side of industrial arts. He took time off during the 1940-41 school year, to finish his doctorate at the University of Missouri while F. Theodore Paige temporarily filled in as Chair.

Kinison was instrumental in bringing the honorary fraternity Epsilon Pi Tau to Ohio University, for which he served as advisor until his retirement in 1959. He also wrote a textbook called *Duplicating Processes*, which was used by the department. A World War I veteran, Kinison held the department together during the years of World War II when enrollment declined drastically.

F. Theodore Paige, who joined the faculty in 1937 to fill the vacancy left by the death of Dow Grones, vividly recalled the shortage of students: Some classes had only three. Chairmanships at Ohio University were traditionally held on a rotating basis. In 1950, Kinison stepped down but stayed with the department for nine more years. Dr. Donald Perry, later Chairman of the department, was a student of Kinison’s. He recalled Kinison’s advice to the faculty attending conventions: Be seen and be heard. “He was very conscientious of public and professional relations,” Perry said. Kinison was fondly remembered after his death in 1965. Paige, who succeeded him as Chairman in 1950, said Kinison’s life was “well spent in service to his students and friends. His adherence to a code of high standards and complete devotion to teaching will long be remembered by his colleagues and students.”

FLASHBACK
Faculty under Kinison

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Theodore Paige</td>
<td>1937-1975</td>
</tr>
<tr>
<td>James Stephan</td>
<td>1938-1944</td>
</tr>
<tr>
<td>Douglas Clausen</td>
<td>1941-1943</td>
</tr>
<tr>
<td>Herman Humphrey</td>
<td>1945-1950</td>
</tr>
<tr>
<td>Lawrence Calvin</td>
<td>1947-1973</td>
</tr>
<tr>
<td>Donald Perry</td>
<td>1948-1974</td>
</tr>
</tbody>
</table>
In the summer of 1937, F. Theodore Paige was working on his doctorate at Ohio State University while on vacation from his teaching position at an Iowa public school. When Dow Grones became seriously ill during Ohio University’s summer session, the summer school director turned to his alma mater, the University of Iowa, to find a replacement. Paige agreed to finish the summer at Ohio University and put his Ph.D. on hold.

When Grones died at the beginning of the fall quarter, Paige accepted the full-time teaching position. The department passed into a new era when McLaughlin died in 1938 and Kinison became Chair. During 1940-41, while Kinison was finishing his doctorate at the University of Missouri, Paige filled in as Chairman. His first term as Chairman was, therefore, a brief one.

World War II was a tumultuous time for the department. Enrollment plummeted, and only infantry men in training kept the university going. Faculty members were exempt from the draft only until 1944. After that, some faculty joined the military voluntarily. Douglas Clausen, for instance, left to write instruction booklets for the military. In 1945, Paige took a leave of absence to join the Navy. After he was trained in Plattsburg, NY, he served in the port director’s office in Panama. He returned to Ohio University in February 1947.
A changing focus: Industrial Technology

In 1950, the chairmanship changed. Paige found himself at the head of a department that was beginning to question its purpose. Emphasis had been on training teachers since the beginning of the department. But when Paige sent a job questionnaire to alumni, the results were surprising.

“We found that roughly 50 percent of our graduates were not teachers,” he said. “They were in industry.”

As a result of the alumni survey, the Bachelor of Science in Industrial Technology degree (BSIT) was conceived. The idea was already being implemented in a few other industrial technology departments across the country. Some new courses were added, but the program also made use of other departments.

FLASHBACK
Changes in 1955-56

- The first BSIT was awarded to Worley Stout in 1956

- The department moved in anew direction—literally—when the supply and maintenance building on West Union Street was renovated to become the Industrial Arts Building, a move Paige said was “satisfactory but far from ideal” for the department

- Paige’s five-year term as chairman ended in 1956

INDUSTRIAL ARTS BUILDING: In 1956, the university renovated a supply and maintenance building, and transformed it into the Industrial Arts Building. Today, this building is called the “Central Classroom Building.” Industrial Technology moved out of the building and into Stocker Center in 1985.
BUILDING ON SUCCESS

Unfortunately, instructors were not added as fast as the courses were filling. Professors were asked to teach more courses, and instructors were asked to counsel students who now had much greater freedom in choosing their program of study.

“We let each student pretty much pick his own major,” Paige said. “One student, for example, wanted to be an industrial photographer, so we helped him fix his schedule the way he wanted it and then sent him over to the Department of Photography. That was a good IT program, where all students followed their own wishes.”

Donald Perry took Paige’s place as Chairman until 1959. The same year, Perry took a leave of absence to participate in an education program in Nigeria. While Perry was in Nigeria, Kinison retired, so Paige became Chairman again.

Marvelous days and hard times

Paige described the late ’50s and early ’60s as “marvelous days” because of the caliber of the IT students and the strong social links between students and faculty. The School of Home Economics was part of the College of Applied Science at the time, and many of those students sponsored picnics. Paige also played host to the college’s holiday parties.

In 1964, the College of Applied Sciences became the College of Engineering and Technology. More classes were added, including fluid power. Paige went on sabbatical for one quarter in 1964 to take classes in hydraulics and pneumatics at different companies. He became instrumental in the development of fluid power classes at Ohio University and taught them for some time.

In 1965, Paige stepped down from the chairmanship. President Vernon Alden, in an attempt to bring in new faculty, required all departments to divide their faculty into three equal sections. The bottom section would not receive raises. It’s no surprise, then, that Paige now says “it was no fun to be chairman.”

The tradition continues

For the next decade, Paige remained with the department in a full-time teaching position. In 1975, he retired. “I’ve had a really excellent teaching career,” he said, reflecting on the countless students he had affected. “That’s what you live on.”

“He was influential in changing the thrust of the department,” said Professor Emeriti Dr. James Fales, also a Loehr professor.

Paige died November 18, 2002. The premiere award for Industrial Technology seniors, the F. Theodore Paige Outstanding Graduating Senior Award, is named in his honor. Award winners receive a monetary award and have their name placed on a plaque in the Industrial Technology wing in Stocker Center.
BUILDING ON SUCCESS

A Program Takes Shape: The Perry era

Donald Perry 1956-59, 1965-74

During the 1930s, Donald Perry studied in the College of Education’s Industrial Arts Department, where he received his Bachelor of Science in 1940. After working as a physical reconditioning instructor in the Army during World War II, he returned to Ohio University to work on his master’s degree. He was hired as an instructor in Industrial Arts in 1947 and finished his master’s in 1949. In 1955, he earned his doctorate from Bradley University in Peoria, Ill.

When the department moved into its new building in 1956, Perry was an associate professor. He was also named Chairman. “We were in Super Hall and the faculty had a wish list of what they’d like in the way of a new building,” Perry said. “The building on Union Street became available, and we were told that was to be our new home.” The site would be remodeled. Paige did not believe the building would suit the needs of the department. Dean Edwin Taylor (1947-1965) found it necessary to change chairmen for the move. It was also time for the chairmanship to rotate so Paige’s five-year term ended in 1956. “It makes quite a bit of difference, who was chairman at the time and what got done in the program,” Perry said. In 1956, the department was operating almost exclusively as a teacher education department. “The faculty was primarily interested in turning out industrial arts teachers,” he said.

FLASHBACK

Faculty under Paige and Perry

<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawrence Calvin</td>
<td>1947-1973</td>
</tr>
<tr>
<td>George Tinetti</td>
<td>1951-1955</td>
</tr>
<tr>
<td>William Sellon</td>
<td>1956-1958</td>
</tr>
<tr>
<td>George Grether</td>
<td>1956-1958</td>
</tr>
<tr>
<td>John Adams</td>
<td>1958-1985</td>
</tr>
<tr>
<td>James Armbruster</td>
<td>1958-1966</td>
</tr>
<tr>
<td>Howard Shull</td>
<td>1958-1982</td>
</tr>
<tr>
<td>Albert Squibb</td>
<td>1958-1993</td>
</tr>
<tr>
<td>Earl Weber</td>
<td>1958-1962</td>
</tr>
<tr>
<td>Robert Hawlk</td>
<td>1960-1984</td>
</tr>
<tr>
<td>William Covert</td>
<td>1960-1967</td>
</tr>
<tr>
<td>Ronald Baird</td>
<td>1962-1966</td>
</tr>
<tr>
<td>Phillip Wynn</td>
<td>1962-1964</td>
</tr>
<tr>
<td>John Jenkins</td>
<td>1964-1968</td>
</tr>
<tr>
<td>William Creighton</td>
<td>1966-1986</td>
</tr>
<tr>
<td>Louis Gysler</td>
<td>1966-1967</td>
</tr>
<tr>
<td>Nevil Moore</td>
<td>1966-1968</td>
</tr>
<tr>
<td>Alfred Roth</td>
<td>1966-1968</td>
</tr>
<tr>
<td>Richard Nostrant</td>
<td>1968-1990</td>
</tr>
<tr>
<td>Arlen Saunders</td>
<td>1968-1985</td>
</tr>
<tr>
<td>Leonard Huffman</td>
<td>1966-1969</td>
</tr>
<tr>
<td>Norman Tomazic</td>
<td>1968-1970</td>
</tr>
<tr>
<td>Jim Heim</td>
<td>1969-1973</td>
</tr>
<tr>
<td>Jerry Jewson</td>
<td>1969-1972</td>
</tr>
<tr>
<td>Gary Buck</td>
<td>1972-1973</td>
</tr>
</tbody>
</table>
BSIT changes department’s focus

The BSIT program began to change the nature of the department, but “it really didn’t grow big until the 1960s,” Perry said. He began creating a link between the department and industry. His work with Ford Motor Company doing personnel research resulted in “a number of beneficial industrial contacts,” he said.

In 1959, the same year Kinison retired, Perry left to represent Ohio University for two years in Enugu, Nigeria as a Technical Education Consultant to the Administry of Education. Paige returned to the chairmanship until 1965. While in Nigeria, Perry helped set up nine “handicraft centers” to train teachers in elementary wood and metal work — skills they could later teach to Nigerian boys.

When he returned from Africa, Perry was commissioned to develop the department’s cooperative education (co-op) program, ultimately a great success. Students alternated quarters between college study and working in industry. Many students later got jobs with the companies where they did their co-op programs and already had seniority. When he returned to the Chairmanship in 1965, Perry urged faculty members to spend time in industry. The idea, however, “went over like a lead balloon.”

“The challenge was how to get an up-to-date program for these students who were going into industry with a faculty who hadn’t been there themselves,” Perry said.

Getting industry involved

The next step was to bring in industry professionals as junior faculty to teach for one or two quarters.

“We had some men from Ford Motor Company and Milicron in Cincinnati,” he said. “Even some of our graduates who knew our program would come back and work on their master’s. They had a foot operating in industry as well as here.”

Bringing teachers in from industry worked well because it injected realism into the program. Student enthusiasm was high. Moreover, at a time when other departments were struggling with declining enrollment, “the Department of Industrial Technology was graduating as many people as the rest of the College of Engineering put together,” Perry said.

Perry’s second term as chairman was far more turbulent than his first. Between 1967 and 1969, both the department and the building were renamed Industrial Technology. But Perry’s greatest challenge as chairman and as a faculty member was the 1970 student riots.

“Before the riots, if you wanted to do something, the administration let you do it,” Perry said. “We got a lot of things done. We got new equipment, support to go into industry and use their equipment.”
Student riots

When the university closed on May 15, 1970, to prevent possible vandalism, the students and faculty became frustrated. “The kids wanted to come in and work on things, but we could only let them in, one at a time, to get their stuff,” Perry said.

Dr. Albert Squibb was an Associate Professor on sabbatical at the time of the riots. Students he was in touch with throughout the entire college, not just the Department of Industrial Technology, were sorry the university was shutting down.

“The students were doing everything they could to keep it from closing down,” Squibb said. “Ninety-five percent of the student body felt they were a victim of the whole thing.” Many blamed outsiders, not the university, for the riots.

Closing the university before final exams and graduation in the spring meant cleaning up in the fall of 1970. Students still had to take exams, and professors were faced simultaneously with finishing spring grading and teaching fall courses.

There was no commencement ceremony in 1970. As a result, 1970 graduates were invited back for a ceremony in 1980. The riots left the university “with a lot of hard feelings,” Perry said. “It should never have happened that way.”

FLASHBACK

1966 Course Offerings

The industrial technology curriculum has undergone several revisions. In the ’50s and ’60s, the focus began to shift from teacher education to preparing graduates for industry. Several new courses were added.

1966 course offerings included:

- Metal forming and joinery
- Machine metalworking
- Metalworking of engineering
- The wood industry
- Ceramics
- Enameling and glasswork
- Art metal
- Plastics
- Small engines
- Automotive theory and repair
- Industrial electricity
- Basic electronics
- Graphic arts
- General wood
- Wood turning
- Furniture upholstery
- Patternmaking and foundry
- Welding
- Machine shop
- Sheet metal presswork
- Hydraulic controls
- Power applications
- Electronics applications

THE PAST AND THE PRESENT OF IT AT OU
Perry retires

Perry remained Chairman until 1974, when he retired from teaching to manage four photofinishing plants for the Nashua Company. One of the reasons he left was because the department could not retain all faculty due to tight budgets. Later, after retiring from Nashua in 1979, he worked in construction.

Perry left a strong legacy for the department: industry involvement, a facet of the IT program that still exists today. “Guys from industry brought the real world into the department,” he said. “Industrial involvement is the way to go.”
BUILDING ON SUCCESS

Hard times, new directions:

The Squibb era

Albert Squibb 1974-79

In 1951, Albert Squibb graduated from Ohio University with a Bachelor of Science in education. After receiving his master’s in 1956, he became an instructor in Industrial Arts. When Perry left in 1974, Squibb became a full professor and Chairman of the Department of Industrial Technology for five years. The department couldn’t afford to look at hiring anyone from outside Ohio University. At the time, budgets were extremely tight due to dropping enrollment and the Vietnam War. “My biggest problem as chairman was to keep the department together without losing faculty,” Squibb said. “Money was limited. We really had some hard times.”

Enrollment, faculty struggles

Enrollment may have declined because young men no longer could escape the draft through college. There were also no budget increases during those years and very little new equipment was purchased. “We had to cut back,” Squibb said. “We couldn’t fire anyone on tenure and I didn’t want to. I thought we had a good staff. So we cut wherever we could. Instead of having a phone in each room, we had one on each floor.” Supplies, equipment and maintenance suffered. Faculty suffered also. Some left for better jobs, and the department could not promise tenure to young faculty. “It was not a good time to be Chairman,” Squibb said.

Students also suffered through bad economic times. Industries were cutting back. That meant cuts in co-op programs. Clearly, companies could not hire co-op students when they were firing their own workers. Squibb’s biggest achievement as Chairman was keeping the department alive. He now calls himself a “caretaker instead of an innovator.”

FLASHBACK

Faculty under Al Squibb

<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Theodore Paige</td>
<td>1937-1975</td>
</tr>
<tr>
<td>John Adams</td>
<td>1958-1985</td>
</tr>
<tr>
<td>Howard Shull</td>
<td>1958-1982</td>
</tr>
<tr>
<td>Robert Hawlk</td>
<td>1960-1984</td>
</tr>
<tr>
<td>William Creighton</td>
<td>1966-1986</td>
</tr>
<tr>
<td>Richard Nostrant</td>
<td>1968-1990</td>
</tr>
<tr>
<td>Arlen Saunders</td>
<td>1968-1985</td>
</tr>
<tr>
<td>William Reeves</td>
<td>1975-2003</td>
</tr>
</tbody>
</table>

The chairmanship was rewarding but frustrating because of tight budgets. During Squibb’s tenure as chair, two Industrial Technology landmarks were razed. In 1974, Ewing Hall, where IT had its humble beginnings, was demolished to make way for the Scripps amphitheater. In 1976, Super Hall was razed, to be replaced by a parking lot. The Bentley Hall Annex now occupies that site.
SUPER HALL:
Even after the hall was torn down in 1976, the graffiti wall was retained. Many students today would recognize the wall that stands at the intersection of Richland Avenue and West Mulberry Street.

Two departments merge

Squibb’s five-year term ended with the 1979 winter quarter. He was asked to stay on as Chairman through June, however, while the college made some important changes. Industrial Technology had always had close ties to Engineering Graphics. Both departments were in the IT building, and graphics classes were part of the requirements for the BSIT. In 1979, both departments had lost faculty, and the college decided to merge them. Menno DiLiberto, chairman of the Department of Engineering Graphics, was chosen by the faculty to head the revamped Department of Industrial Technology.

After stepping down from his chairmanship, Squibb returned to full-time teaching. In 1989, he became an Assistant Dean in the college, handling undergraduate student relations. He officially retired in 1992. The Albert R. Squibb Service Award is named in his honor and is given annually to a graduating senior who has provided exemplary voluntary service to the department and his or her fellow students.
A program grows: The DiLiberto era

Menno DiLiberto 1979-85

When Industrial Technology merged with Engineering Graphics, the new connection meant changes in faculty, curriculum, and leadership. Menno DiLiberto became Chair of Industrial Technology in 1979. DiLiberto had worked for several companies, including Ryan Aircraft Company in San Diego (builders of Charles Lindbergh’s *Spirit of Saint Louis*), for 14 years before earning his master’s in 1958 and coming to Ohio University for two years in 1962. He left to work on his doctorate at the University of Illinois, returning to Ohio University in 1967. A year later, he became Chair of Engineering Graphics.

When that department merged with Industrial Technology, DiLiberto became Chair of the combined department. New courses were added in numerical control of machines, computer graphics, and robotics. “These programs helped to update students on what industry was doing,” DiLiberto said. Dr. Diliberto oversaw the movement of the department from the building on West Union Street into the newly named Stocker Center. Combining all the college’s departments into one building was advantageous for all departments. “We certainly did improve our stature within the college and the university.” He said. In 1985, Diliberto stepped down as Chair. He retired in 1989 but returned every fall to teach engineering drawing until 1996 when he took full retirement.

FLASHBACK

Faculty under DiLiberto

<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Adams</td>
<td>1958-1985</td>
</tr>
<tr>
<td>Howard Shull</td>
<td>1958-1982</td>
</tr>
<tr>
<td>Albert Squibb</td>
<td>1958-1998</td>
</tr>
<tr>
<td>Robert Hawlk</td>
<td>1960-1984</td>
</tr>
<tr>
<td>William Creighton</td>
<td>1966-1986</td>
</tr>
<tr>
<td>Richard Nostrant</td>
<td>1968-1990</td>
</tr>
<tr>
<td>Arlen Saunders</td>
<td>1968-1985</td>
</tr>
<tr>
<td>William Reeves</td>
<td>1975-2003</td>
</tr>
<tr>
<td>Thomas Sarchet</td>
<td>1979-1952</td>
</tr>
<tr>
<td>Curtis Johnson</td>
<td>1981-1982</td>
</tr>
</tbody>
</table>
Transition time: The Creighton era

William Creighton, Jr. 1985

Moving the department into the new Stocker Center was the job of acting Chair, William Creighton. He was a retired Professor who had stayed to facilitate the transition between chairmen and buildings. Creighton said faculty members were concerned about the identity of the department. The dean assured him that the identity of Industrial Technology would be maintained and that the department would grow. Creighton defined IT as a combination of engineering and management. “To maintain the identity of the department, a balance between the two must be maintained,” he said. “While engineering is the process of designing a product and management sees to the coordination of facilities and labor, industrial technology actually ‘makes it happen,’” Creighton observed.

The C. Paul and Beth K. Stocker Engineering and Technology Center was dedicated April 10, 1986. Creighton made sure everything was in place in the new building. “I tried to set the groundwork for what was to come for the new chair who would make changes,” he said. He wanted to move the department and get things started before the college spent the money elsewhere. He knew when he accepted the chairmanship that he would have difficulties. Still, serving as acting Chair was “an excellent experience,” even if only for a transitional period, Creighton said. If he had been Chair for a longer period, things would have been done differently, he said. Selecting the new Chairman was the job of an IT faculty committee. It included Creighton, Squibb, and faculty members from other departments in the college. Creighton felt the new Chair should come from outside the college. Otherwise, the department might become stagnant. Creighton retired after the college hired Dr. James F. Fales from Purdue University, as Department Chair. Creighton taught electronics every winter quarter until 1992, when he took full retirement.
Building on success: The Fales era

James Fales 1986-2006

With extensive teaching experience from Purdue University and Texas A & M University, Dr. James Fales joined the Department of Industrial Technology as Professor and Chair in 1986. As he began to give it a new direction, he found himself immersed in a department struggling through two major changes. First, the department was changing buildings for the third time in its lifetime. Professors and students were adjusting to the newly renovated Stocker Center. The change in location consolidated the department with six other departments that had been scattered in different buildings across campus, and brought about an atmosphere of camaraderie. The resulting interaction has had a positive influence, said Professor Emeritus William Reeves. “It created a broader view among the faculty of our roles.” Record-keeping, student services and department office operations were also “drastically improved” when Fales came on board, he added. The second major change awaiting Fales, and the one which called for the most leadership, was the selection of new faculty. Fales coined the phrase “current and relevant” to describe the IT program as well as its faculty during his time as Chair. This phrase is still our operating guideline today.

New faces

During the 1980s, all but one long-time faculty member retired. This gave Fales a chance to establish major goals for hiring new faculty members. An important goal was to find professors who not only had the right academic credentials but had also worked in industry and could bring that first-hand knowledge into the classroom.

New faculty members hired in the late ’80s and ‘90s included Patrick McCuistion, Peter Klein, Tom Scott, Dinesh Dhamija and Todd Myers. Mark Rowe and Kevin Berisso joined the faculty in the 21st century. All new faculty members have intensive experience in industry. “The faculty that was recruited is a strong one and bodes well for the future of the department,” said T. Richard Robe, then Dean of the Russ College of Engineering.

Flashback

Faculty under Fales

<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albert Squibb</td>
<td>1958-1998</td>
</tr>
<tr>
<td>Menno DiLiberto</td>
<td>1962-1996</td>
</tr>
<tr>
<td>William Reeves</td>
<td>1975-2003</td>
</tr>
<tr>
<td>John Deno</td>
<td>1985-2005</td>
</tr>
<tr>
<td>Timothy Sexton</td>
<td>1985-present</td>
</tr>
<tr>
<td>Dinesh Dhamija</td>
<td>1987-2000</td>
</tr>
<tr>
<td>Ernest Gathron</td>
<td>1988-1994</td>
</tr>
<tr>
<td>Patrick McCuistion</td>
<td>1989-present</td>
</tr>
<tr>
<td>Peter Klein</td>
<td>1990-present</td>
</tr>
<tr>
<td>Tom Scott</td>
<td>1993-present</td>
</tr>
<tr>
<td>Todd Myers</td>
<td>1998-present</td>
</tr>
<tr>
<td>Mark Rowe</td>
<td>2001-2007</td>
</tr>
<tr>
<td>Kevin Berisso</td>
<td>2005-present</td>
</tr>
</tbody>
</table>
and Technology (1980-1996). Myers, Rowe and Berisso were all alumni from this department with excellent industrial experience.

“I wanted people who had real professional experience, the kind of experience that students seek and pursue,” explained Fales. Most of the new faculty members were responsible for hiring in the companies they came from. “That lends a high degree of credibility to our department,” he said. “It brings the right kind of focus to what we should be doing.” Combine that background with strong academic credentials, and you get faculty who have consistently earned outstanding professor awards, including the College’s top honor, the Russ Outstanding Undergraduate Teaching Award. During Fales’ term as Chair, six IT professors received this award; John Deno has received it twice and Tom Scott has received it three times.

Current and relevant

“The two key words in our department are ‘current’ and ‘relevant,’” said Fales. “If it isn’t current, it’s history. If it isn’t relevant, it’s not helping students get jobs today, so why teach it?” With this philosophy, Fales spent much of the time on the road, drumming up contacts for the department while ensuring that the department kept abreast of current technological and educational standards.

The focus on current and relevant is reflected in the research and academic pursuits of faculty members, the inputs of the Industrial Advisory Board, department facilities, and the IT curriculum.

Continuous is Evolving

During Fales’ twenty year tenure as Chair, the department continued to evolve. Due to his diligence and drive, the department continued to improve its stature in the college and university. Industrial support increased including more Co-Ops for our students and better jobs for our graduates. The Industrial Advisory Board was developed as a true extension of our program. Fales realized that getting advice from people really doing the work was critical to maintaining the “current and relevant” philosophy.

Fales was well known in the college for his passion for students and their success both in school and on the job. He worked tirelessly with students in what we call “student services” and tried to stay in touch with all graduates. He began the “business card folders,” which are updated whenever alumni send new cards. This is an excellent recruiting method as well as a great way to answer the old question “What is Industrial Technology?”

Fales also developed excellent relationships in the College of Business. This lead to the requirement that all IT grads also earn a Business Minor. OU may still be the only IT program in the country with this valuable requirement.
Added Focus Area – Manufacturing Information Technology

Although IT at OU had a great history of providing industry very capable professionals in the manufacturing industry, Fales realized many grads were focusing more on computer applications. Following very lengthy discussions with faculty and industrial advisors, a new focus area was born. Manufacturing Information Technology provided students to develop greater depth in areas such as database applications, networks, communications and automatic identification and data capture.

Alumni from this focus area hold positions as Hospital Senior Systems Analyst, Head Information Technologist for Large Professional Recruiting Firm, and Information Technology Manager for Medical School.
Flashback:
2006 Course Offerings

Introduction to Industrial Technology
Engineering Graphics Fundamentals
Engineering Graphics Applications
Manufacturing Materials
Introduction to Manufacturing
Computer Methods in Industrial Technology
Industrial Plastics
Metal Machining
Metal Fabricating and Casting
Power Transmission
Applications of Object Oriented Programming
Industrial Electronics
Quality Assurance and Metrology
Senior Seminar
Industrial Instrumentation and Controls
Contemporary Integrated Manufacturing
Product Manufacturing
Hydraulics and Pneumatics
Production Tooling
Product Documentation
Robotic Applications
Manufacturing Computer Technology
Manufacturing Database Applications
Manufacturing Networks and Data Communications
Automatic Identification and Data Capture
The Center for Automatic Identification
1988-2007

Ohio University’s Center for Automatic Identification, established in 1988 by Dr James Fales, was the nation’s first research and education center devoted solely to the study of AIDC technologies, including bar coding, RFID, voice recognition, card technologies and biometrics. The Center was established to meet the increasing demands of business and industrial users of bar coding and other AIDC technologies. These technology tools are being applied in virtually all business channels to improve productivity by increasing data accuracy and timeliness. The mission of the Center was to provide a venue for open, unbiased research and education related to all aspects of automatic identification and data capture.

One of the Center’s primary activities had been the Automatic Identification and Data Capture Technical Institute (AIDCTI) held each summer at Ohio University. These week-long educational activities have been funded and jointly sponsored by the Automatic Identification Manufacturers, Inc., (AIM Global) and the Uniform Code Council, Inc., (UCC) as a means of helping university, college, and community college professors better understand the technical aspects of keyless data collection. Professors of engineering, technology, management, retailing, animal sciences, and health care have taken advantage of these institutes. End users and technical equipment and service providers also attend the annual AIDCTI to strengthen their grasp of the automatic identification technologies as business tools and enablers.

Because the Center is well-stocked with representative state-of-the-art equipment, research opportunities abound. Major studies of bar code symbology robustness have been conducted by the Center. Graduate students from other departments in the College occasionally select topics in automatic identification for their research, conducting studies in areas of voice recognition, radio data transmission and bar coding. Industrial Technology undergraduate students use the Automatic Identification Lab both as a classroom and as a resource center for individual and team-based assignments and projects.

As the use of automatic identification continues to increase in all forms of applications worldwide, it is expected that the Center can and will provide answers to AIDC questions, both general and specific.
Deans’ perspectives

“Under the continued leadership of Jim Fales, the Industrial Technology program is among the best, if not the best, program of its kind in the country,” says Dennis Irwin, Dean of the Russ College of Engineering and Technology. He further adds, “Many of its graduates hold industrial positions at the highest levels of responsibility in their companies and these graduates are among the most loyal in the Russ College. Industrial Technology faculty are extremely dedicated to their students and are, rightly so, proud of their rapport with students.”

Former Dean T. Richard Robe (1980-1996) says “I think without a question Fales has had a very positive impact on the department,” says “He has done much to modernize the curriculum.” Several changes have been made in the BSIT curriculum since 1986, when Fales joined the department. “Thanks to his vision and leadership, the department is recognized as one of the strongest industrial technology programs in the country.” “Fales’ accomplishments in the area of automated identification techniques have given him and the university recognition throughout the world,” asserted former Dean W. Kent Wray (1996-2000). Former interim Dean Jerrel Mitchell (2000-2002) adds “Under Dr. Fales’ leadership the Department of Industrial Technology continues to be accredited by the National Association of Industrial Technology (NAIT), receiving high praise by the accrediting teams.” The department was originally accredited by NAIT in 1978 and has maintained accreditation throughout, the most recent reaccreditation being in 2003. “It is very clear that excellent administrative leadership is being provided for the Industrial Technology program,” visiting team members of NAIT commented.
Outstanding professors

Industrial Technology faculty members are certainly no strangers to being honored for their exemplary work. One example of an outstanding professor in the department is Dr. William Reeves, who, in addition to winning various other awards, was presented the Class of 1950 Teaching Excellence Award in 1985, was distinguished as a university professor in 1985 and was a two-time recipient of the Russ Outstanding Undergraduate Teaching Award, the highest teaching honor in the college.

Other awards that distinguish IT faculty members include named professors. Since 1993, Dr. Fales has been recognized with the special distinction of Loehr Professor, 1993-2006, which was named in honor of Gerald Loehr, a 1952 industrial engineering graduate, to recognize excellence in engineering education.

In 2000, Dr. Scott was named the first Kraft Family Scholar, an endowment created by Robert and Marie Kraft to benefit faculty members in the department. In 2004, Dr. Klein was also named a Kraft Family Scholar.

Several IT faculty members also have been awarded honors in industry. Dinesh Dhamija, who served as an Assistant Professor from 1988 to 2000, was presented the Sargent Americanism Award by the Society of Manufacturing Engineers in 2000. This award recognizes faculty who have developed significant and innovative course work that creates a better understanding of business skills related to manufacturing.

In 1998, Dr. Fales was honored with the Don Percival Award, presented to an individual or organization from the user community in recognition of outstanding contributions to the application of AIDC technologies.

<table>
<thead>
<tr>
<th>White Awards for the Department of Industrial Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching</td>
</tr>
<tr>
<td>1998 Timothy Sexton</td>
</tr>
<tr>
<td>1999 William Reeves</td>
</tr>
<tr>
<td>2000 Thomas Scott</td>
</tr>
<tr>
<td>2001 John Deno</td>
</tr>
<tr>
<td>2002 Pat McCuistion</td>
</tr>
<tr>
<td>2003 Thomas Scott</td>
</tr>
<tr>
<td>2004 James Fales</td>
</tr>
<tr>
<td>2005 John Deno</td>
</tr>
<tr>
<td>2006 Timothy Sexton</td>
</tr>
<tr>
<td>2007 Thomas Scott</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Russ Outstanding Undergraduate Teaching Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983 and 1987</td>
</tr>
<tr>
<td>1992 and 2004</td>
</tr>
<tr>
<td>1995 and 2002</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>2006</td>
</tr>
</tbody>
</table>
Outstanding graduates

The F. Theodore Paige Outstanding Graduating Senior Award has been awarded since 1982 to seniors who have especially excelled in the department. Students receive a monetary award, and their names are added to a plaque in the IT office.

Established in 2001, the Albert Squibb Service Award recognizes students who have volunteered their time to help better the department.

Robe Leadership Institute IT Department Senior Leadership Award

BUILDING ON SUCCESS

The **Academic Excellence Award** is awarded to the IT graduating senior with the highest G.P.A.

2001 Catherine Baker
2002 Craig Watson
2003 Joe Culler
2004 Troy Miller
2005 David Miller
2006 Carlos Morris
2007 Jesse Otis

Outstanding industrial technologists

Each year, the National Association of Industrial Technology presents the Outstanding Industrial Technologist Award to those who distinguish themselves by exemplary leadership and the application of industrial technology practices. Ohio University BSIT alumni have received this award more than any other university. Ohio University graduates who have received this award include:

1997 John Myslenski
1998 Charles Cole
1999 Bruce Kozak
2000 James Pecorelli
2002 Robert Wiseman
2004 Brian Bauerbach
2005 Michael Dunn
2006 Tony Hollis
BUILDING ON SUCCESS

STOCKER CENTER

THE PAST AND THE PRESENT OF IT AT OU
IT Today

Continuous Improvement: The Klein Years

Pete Klein 2006 –

Dr. Klein joined the faculty of OU in 1990 after 13 years in the industry. He held positions as Manufacturing Engineering Manager, Production Manager, and Plant Manager at major corporations. These experiences prepared him well to be a faculty member in the IT department. He continued the legacy of Fales by working closely with the College of Business. He taught Operations Management for that college to undergrads, graduate and executive MBA students.

Klein believes students are in this department to pursue careers; therefore the program is very “job focused.” “Input from alumni, advisory board members, employers and professional organizations is critical to our program remaining current and relevant,” says Klein.

Industrial ties

“The Department of Industrial Technology has a long history of industry involvement,” remarked Dean Dennis Irwin, “These ties, as well as efforts by Dr. Fales, the department’s faculty, and the department’s alumni, have greatly improved an already strong program. To cite just one example, because of various in-kind gifts the department has received, IT students have access to equipment they otherwise would not have.”

As a result of these ties, IT students have an opportunity to interface with industry and gain valuable experience, through programs such as Co-Op. Said Marty North, then the Assistant Dean for Career and Outreach Programs, “Our Co-Op employers are extremely happy with our Industrial Technology students. Employers often comment on the students’ strong mechanical and troubleshooting skills, as well as their ability to work well with all levels of organization.”
IT professors and industry

IT professors are crucial to maintaining the link between industry and the department. By virtue of their strong ties and involvement in industry, they have contributed to the excellence in teaching at Industrial Technology. Their professional associations have brought a wealth of current information and technology to IT classrooms and labs, given students a hands-on education, and created career opportunities for graduates in the industrial marketplace.

Faculty members regularly attend national conferences and industry seminars. They make valuable business contacts, and occasionally return with a new piece of software or equipment for the department. Equipment and software donations received from industries enable students to put their hands on real high value technology that they might actually implement in a company. In addition, faculty ties with industry have resulted in job placements for students and graduates, as well as created advising roles in classrooms for corporate leaders.

Take, for instance, Professor Pete Klein, who held various technical and management positions with major US corporations for over 13 years. Dr. Klein maintains a strong base of industrial contacts which are critical to the program. During a faculty development leave in 1997, he visited more than 30 companies to update his own knowledge level as well as to promote the program. “Several of these companies added Ohio University to their recruiting schedule and have employed our graduates,” he remarked. “Some have also employed our students as part of our co-op program.”

“I keep in contact with many companies which have continued to provide us with great material for classes,” said Klein. “We continually receive donations of plastics material and lab equipment for our students from various companies.”

Klein has been actively involved with the Society of Plastics Engineers for many years. “Professional and Trade associations are always a good source of personal growth as well as potential supporters for our program,” he observed. Klein is currently involved with the Association of Rotational Molders International, which has helped the program with teaching materials. In addition, he attends seminars and trade shows sponsored by these organizations.
The relationship between the companies and IT is mutually beneficial. While IT students benefit from a hands-on educational experience using sophisticated industrial equipment, companies benefit in the long run by employing these very students.

Dr. Todd Myers is yet another example of someone whose links with industry benefits IT students. He has ten years of experience in the automotive manufacturing industry, including several management positions.

“It is important to relate to what is current and relevant in technology,” said Myers. Staying abreast of changes in technology not only gives students the competitive edge for securing jobs, but enables them to ‘identify gaps in the company and become leaders in moving that company forward.’”

Professor Patrick McCuistion plays a significant role in educating IT students about what is current and relevant, especially in engineering drawing standards. He serves on several national standard committees that set standards for engineering drawings and related documents. These committees develop guidelines for drawing that are adopted and used worldwide.

At committee meetings, Dr. McCuistion interacts with representatives from major U.S. corporations and industries. “The beauty of these meetings is that I get to bounce around ideas with key players in industry,” he remarked. Students benefit from his interactions with industry representatives because they have access to the latest standards and technology in industry. Many of the classes McCuistion teaches are relevant with these standards. “Our students have the advantage of getting first-hand information about new standards in industry,” he said. In addition, McCuistion’s expertise in dimensional management over the years has created jobs in this field for more than 60 IT students.
Industrial Advisory Board

The Industrial Advisory Board (IAB) is an integral part of the Industrial Technology program at Ohio University. Members typically hold important company and business positions such as president, human resource director or engineer, and are employers or potential employers of program graduates.

“The IAB helps us stay current and relevant,” said Dr. Klein. “They provide recommendations to keep us focused on what is really important.” The Board consists of Corporate Executives as well as rising “stars” in their respective organizations. Many are alumni from the program.

“Today and for the past several years, the IAB feels that the IT graduate has the best opportunity to be successful in a variety of vocations and interests,” remarked Charles Cole, a 1966 BSIT graduate. “They are well rounded in the field of industry and business and have become expert communicators. They appear to have unlimited self-confidence in their education at Ohio University and are ready to take the next step into their future.”

Cole’s experience with the IAB goes back to 1990. At the time, Ohio University was attempting to understand the true needs of industry, and the department felt it could better prepare students for the industrial world if it created a feedback system. “IAB meetings have been instrumental in shaping the IAB and the IT faculty,” said Cole. “We all listen well and spend time with the graduating seniors understanding what they have learned from the educational process.”

“Every May when we visit, we are awed by the IT faculty and the amount of personal commitment they demonstrate toward the students and their goals,” he further added, “They have created excitement for the students about the learning process. With that excitement, they have also an atmosphere of commitment and readiness for dealing with stress- an everyday condition in the outside world.”

“Industrial Technology is a very effective program and we are very fond of it,” said Gary Conlan, another IAB member who has been involved with IT for almost 15 years now. “The IT faculty are doing a good job making sure that the courses do not go stale and out-of-date.”

“We provide a contact between industry and the IT faculty to make sure that the program is current and relevant, and that they are up-to-date with the latest technology,” remarked Conlan. “That gives the faculty a real-world check of the program.”

In addition to providing advice on program and curriculum matters, assisting in student placements, strengthening industrial ties, locating and securing equipment and software donations, and raising private donations of funding, board members also help identify opportunities for faculty technical training and internships.
Advisory Board 2007

Brian Bauerbach, President & CEO, Portola Packaging
Ted Best, R.L. Best International
Harry Covington, President, Ferry Industries
Tony Hollis, Manager RFID Strategy, Exel Logistics
Tim Kerr, Senior Engineer, DaimlerChrysler Corporation
Jack Myslenski, Executive Vice President, Parker Hannifin Corporation
Brianne Oliver, Mfg. Engineering Supervisor, Cooper Power Systems
Keith Overton, Applications Engineer, Trim Systems LLC
Andy Saunders, Informatics Director, University of Cincinnati
Tom Schaefer, Business Development Manager, LXE, Inc.
Tom Starr, Sales & Marketing Operations Manager, Xerox Special Information Systems
Dan Thomas, Human Resource Director, Blackhawk Auto Plastics
Gina Vail, Product Engineer, TS Tech North America, Inc.
Bob Wiseman, Manufacturing Manager, Sunpower, Inc.

Board Member Emeritus

Robert Axline, President, Plastic Card Systems, Inc.
Richard Best, President (retired), R.L. Best International
Charles Cole, Manager, Ford Motor Company
Gary Conlan, Consultant, Conlan & Associates
Gene Dew, Personnel Manager, Allied Mineral Products, Inc.
Michael Dunn, Plant Manager, Cooper Lighting
Jon Hirschick, Premise Inc.
Robert Khaphengst, President & CEO, Dimensional Control Systems
Bruce Kozak, Vice President Marketing Group, U.S. Plastics Machinery
Robert Kraft, Applications Specialist (Retired), Kraft Fluid Systems
Thomas Little, Director of Yield Improvement, ReadRite Corporation
John Markel, Engineering Staff, Honda of America, Inc.
Michael Michael, Industrial Engineer, Diamond Power Specialty Co.
Thaddeus Nutter, Plant Manager, A. Crane Plumbing Company
Robert J. Sefing, Principal, RJS Consulting
Joseph Sheppard, President & CEO, XICO, Inc.
Rob Shook, Director of Quality Assurance, Airstream, Inc.
Peter Smith, President, CADKEY, Inc.
Lamar Springer, President, Dayton Scientific
Ted Thiemann, President, THT Enterprises
Phillip Waldrop, Industrial Modernization Program Manager, Military Aircraft Division
Laboratories

The Department of Industrial Technology strongly emphasizes a hands-on laboratory education for students so they can use this knowledge to enhance the productivity of the companies they work with when they graduate. That’s why all IT courses require students to spend 30 to 80 percent of scheduled class time in labs using industrial materials and equipment. Industrial Technology laboratories are equipped with current and up-to-date real software and equipment that are actually used in manufacturing companies. Department laboratories include:

- Automatic Identification and Data Capture
- Computer Aided Drafting and Design
- Electronics
- General Manufacturing
- Fluid power
- Manufacturing information technology
- Metal casting
- Metal fabrication and welding
- Metal machining/CNC
- Plastics fabrication
- Plastics molding
- Power transmission and automation

Continuous improvement and reorganization of laboratories, and upgrading of software, is an ongoing process at the department.

For instance, the plastics labs are used for the learning of industrial plastics materials and manufacturing processes, including plastics forming and fabricating, and plastics tooling. Students learn the theory of injection molding, extrusion, thermoforming and blow molding. They enhance their knowledge in the laboratory through activities such as material testing, process set-up and operation, design and construction of molds, and quality control.
The metal machining lab is another example of continuous improvement. Here, students practice the application of machine processes used in manufacturing, as well as production techniques for metal machining. Equipment used includes computer numerical control (CNC) machines such as Haas, Mazak, and EDM machining equipment. Laboratory activities include programming CNC turning and machining centers to create molds and mass produce parts, and computer-aided design.

Similarly, in the area of Automatic Identification and Data Capture (AIDC), a state-of-the-art AIDC lab facilitates students’ learning of various methods and systems used to automatically identify objects, such as bar coding, optical character recognition, magnetic strip, radio frequency identification, and biometrics. Students enhance the theory of what they learn about industrial applications such as inventory, production control, order picking, shipping, and receiving in this lab.

In these and other labs, students acquire the broad base of basic knowledge needed to adapt easily to a specialized industrial environment, according to Professor Thomas Scott. “They have practiced the idea of ‘take the knowledge and go do something with it’ so many times,” he added. “It looks to the employer like somebody coming in with experience. It’s experience-based learning personified.”
Curriculum

The Bachelor of Science in Industrial Technology (BSIT) program is geared toward preparing graduates to become technical generalists in the manufacturing environment. The curriculum integrates technical courses with courses in general education, quantitative sciences, natural sciences, and business management. The focus is on teaching what is current and relevant.

“We develop students that are often employed in manufacturing engineering jobs,” said Dr. Myers. Salaries of IT students are comparable with other engineering and business graduates. After entering a company, many IT graduates go through a steady progression of titles from engineers, department manager, plant manager, and beyond.

Course revisions and additions in response to current technology and market demands are ongoing. A major program revision was instituted in the fall of 2000, when the department introduced a Manufacturing Information Technology (MIT) focus area in the BSIT curriculum. This focus allows students to apply information technology within the context of manufacturing organizations.

This change was instituted in response to the recognition of a widely publicized industry and business need for personnel with a cross-disciplinary understanding of manufacturing, information technology, and business practices, and to the application of computer and automation technology for enhancing the efficient management and overall productivity of manufacturing organizations. “Changing our philosophy about program options is the biggest change we have seen in the last couple of years,” remarked Dr. Reeves.

“How can we prepare our students to be successful in their careers?” is the philosophy of the department,” Myers said. “The focus on current and relevant issues helps students excel in their very first job. When they enter a company, they can say, ‘I know how to do this in a better way,’” he added, “They can take their skills and knowledge and apply them to enhance the productivity of their company.”

TODAY
Innovations

In addition to the required technical core, the BSIT curriculum offers a choice of two technical focus areas: Materials & Processing (MMP), and Manufacturing Information Technology (MIT).

- The focus of the MMP area is on the advanced theory and application of industrial processes to produce parts and products from common industrial materials;
- The focus of the MIT area is on the theory and application of information technology within the context of manufacturing.
Technical core

The technical core is comprised of a set of required courses for all IT students and includes coursework in CAD and solid modeling, material science, production and operations, management, materials processing, computer applications, visual basic programming, electronics, quality assurance, instrumentation and control. Most of these courses require extensive hands-on laboratory time in addition to time given to theory. The core also includes a two-course capstone experience: a first course, Contemporary Integrated Manufacturing, which covers integration of information through the manufacturing enterprise, including Enterprise Resource Planning (ERP), Manufacturing Execution Systems, and Supply Chain Management; and a second course, which covers planning of all aspects of production and the management of a real production run to mass produce a product. Each of these capstone courses includes a significant lab component.

Focus areas

Since the curriculum revision in fall 2000, students have two technical focus areas to choose from, Manufacturing Materials and Processing (MMP) or Manufacturing Information Technology (MIT), based on personal interests and career goals. Students who aspire to become manufacturing engineers often choose the BSIT/MMP focus, whereas those who seek to apply information technology within the context of manufacturing organizations go for the BSIT/MIT focus. Some students opt for both.

Business minor

Although the BSIT degree has always included business and management courses, a minor in business became mandatory in 1995 for all IT majors, something unique to the BSIT at Ohio University. This core of business and management courses prepares IT graduates with the necessary skills and know-how to excel in technical-management positions in manufacturing industries. “The business minor often leads students to some type of manufacturing management position within two to three years of entering a company,” stated Dr. Myers whom also earned an MBA.
External support

The Department of Industrial Technology receives two kinds of donations: gifts in kind from companies, and cash donations from alumni and friends. These donations significantly contribute to the development of research and education programs, facilities and equipment, and scholarships to deserving students.

Industry donations

Thanks to the strong industry ties of faculty members, the department consistently receives new software and equipment worth thousands of dollars. For instance, ERP software worth almost $275,000 was donated to the Department of Industrial Technology. “The department sought out this software because it is widely applicable in any manufacturing organization,” Myers said. Other equipment and software donations received from industry in recent years include:

- AIDC equipment and software
- Bar coding and radio frequency equipment
- Voice recognition and magnetic stripe equipment
- Fluid Power Trainer
- An Electromechanical trainer
- GD&T software
- Plastic processing machinery

LEARNING BY DOING: Using an industry-donated trainer, this student simulates real-world conditions for the construction and testing of fluid power circuits
Alumni donations

Through monetary donations, alumni and friends of the Department of Industrial Technology continue to make a significant contribution to develop and enhance research and education programs, facilities and equipment, and to prove scholarships to deserving students. These donations take the form of professorships, scholarships, and discretionary funds.

Donations made by alumni and friends such as Gerald Loehr and Robert Kraft have made possible such distinctions as the Loehr Professor and the Kraft Family Scholar for selected faculty members.

Likewise, retired faculty members and friends have established scholarships such as the Curtis Johnson Memorial Scholarship in Engineering and Technology and the George McLaughlin Scholarship, which are available for Industrial Technology students. The Fales Scholarship is directed towards non-traditional students.

Awards such as the F. Theodore Page Outstanding Graduating Senior Award and the Albert Squibb Service Award reward outstanding students and graduates of Industrial Technology.

Occasionally, a donation will take the form of discretionary funds, designated for “Industrial Technology,” giving the department flexibility in using the money in ways that best assist students. The Jack and Marsha Myslenksi endowment is just one example of these types of funds that encompass a broad range of helping students.

Stocker visiting professors

In addition to its full-time faculty members, the department occasionally hosts visiting professors from other universities and experts from industry. This is part of a Stocker Visiting Professor program that began at the Russ College of Engineering and Technology in 1979.

“Our limited participation in this program has certainly brought in some engineering and technology management personnel who have altered the very nature of our curriculum and programs, as well as provided opportunities for research and development activities for faculty and students,” Dr. Reeves remarked.

Jon Andresen, technical architect in the Information Services Division of United Airlines, was Stocker Visiting Professor of Industrial Technology in 2002. He assisted in teaching classes and was involved with AIDC.

Dr. Phillip Waldrop, industrial modernization program manager in the Military Aircraft Division of LTV Aircraft Products Group, was Stocker Visiting Professor of Industrial Technology in 1991. While here, he taught IT classes and helped revise the curriculum.
Student involvement

Society of Manufacturing Engineers

Many Industrial Technology students are members of Ohio University’s student chapter of the Society of Manufacturing Engineers (SME). The mission of this Society is to provide members with the networking and knowledge that enables their professional growth in the manufacturing community. Founded in 1932, SME has more than 40,000 members in 70 countries, with at least 400 senior and student chapters. Ohio University’s student chapter meets bi-monthly and organizes educational field trips, social events, and brings in guest lectures. Our chapter is very active and has consistently won national awards.

Epsilon Pi Tau (EPT)

The Ohio University Lambda chapter of Epsilon Pi Tau (the international honorary society for technology) originally chartered in 1934, was reactivated in 2004. Since its reactivation the chapter has won the prestigious William E. Warner regional chapter award. The award is competitive in nature and is given for excellence in local chapter operation, including program activities, retention of membership, service projects, accuracy, and in promoting and achieving the ideals of Epsilon Pi Tau.

Engineering Ambassadors

Selected Industrial Technology students also participate in several prestigious programs in the Russ College of Engineering and Technology. The Engineering Ambassadors are a select group of undergraduate students responsible for recruiting students to Ohio University and promoting the College. Another program, the Robe Leadership Institute, involves a seminar course each fall for seniors and graduate students nominated by college departments. The course helps students develop effective leadership skills.
IT support staff

Ronald Porter is the lab coordinator for the department, a position he has held since 1990. In his position, Mr. Porter is responsible for maintaining lab equipment, finding and purchasing new materials and tooling, supervising a number of student employees and assisting in teaching several lab sections. Prior to working at Ohio University, he worked for an industrial machine shop. He also served four years in the Navy. He received the Russ College of Engineering and Technology Outstanding Technical Employee Award in 2006-2007.

Bonnie Behm-Geddes, CPS, is the administrative associate for IT, joined Ohio University in 1988. She worked in the College of Osteopathic Medicine Administration, the Osteopathic Medical Center Administration, Russ College of Engineering Dean’s Office, Aviation Department and now the Industrial Technology Department. Bonnie has received numerous awards: Ohio University Outstanding Classified Employee of the Year, OU Classified Employee of the Month, OU-COM Excellence Award, and International Association of Administrative Professionals Chapter Member of the Year. Bonnie received her CPS (Certified Professional Secretary) certification in 1995 and her Associate’s Degree from Hocking College in 1978.
Faculty profiles

Kevin Berisso

Ph.D., Indiana State University
Assistant Professor

Dr. Berisso joined the Ohio University faculty in 2005. In addition to previous teaching experience at two universities, he has four years industrial experience in manufacturing engineering with two major companies, including international experience. His teaching and research interests are related to computer integrated manufacturing and automatic identification. He has taught undergraduate and graduate classes in computer integrated manufacturing and has conducted industrial training classes to end users and system administrators for custom inventory programs.

Areas of Expertise
- Automatic Identification
- Robotics & Automation

Scholarly Activities
- RFID Testing
- Bar Code Robustness Testing
- Human-machine interfaces for industrial control systems
- Impacts of part orientation on model strength for three dimensional printing
- Treatment of five key independent variables for conducting coordinate measuring machine (CMM) experiments

Service
- SME Chair Elect, Treasurer
- Co-op Committee

Honors and Professional Recognition
- Doctoral Fellow, Indiana State University
- Certified Manufacturing Technologist, Society of Manufacturing Engineers
- Marvin E. & Ann D. White Research Award, 2007

Memberships
- Society of Manufacturing Engineers (SME)
- National Association of Industrial Technology (NAIT)
- Decision Sciences Institute
Peter Klein
Ph.D., Ohio University
Associate Professor

Dr. Klein held various technical management positions with major U.S. corporations during the 13-year period prior to his joining the Ohio University faculty in 1990. His responsibilities included manufacturing and production management, manufacturing engineering management, and business management. Klein was recognized for his implementation of just-in-time, total quality control, and total employee involvement programs. He developed and taught courses in industrial plastics at Colorado State University. Klein has also taught operations management courses for the Ohio University College of Business at the undergraduate, MBA and Executive MBA levels at both local and overseas locations. Klein’s areas of professional interests include manufacturing and production management, quality assurance, and industrial plastics. He has been recognized for excellence in both teaching and research.

Areas of Expertise
● Operations Management
● Plastics Processing
● Composites

Scholarly Activities
● A national study on quality management in industrial technology
● Author of numerous articles and papers
● Research – Plastics Processing and Composites

Service
● Associate Director – The Ralph & Luci Schey Sales Centre
● Reviewer – Technology Interface – On-Line engineering education journal
 ASEE North Central Conference papers
● Previously - Faculty advisor, student chapter of the Society of Plastics Engineers
 Faculty advisor for Campus Crusade for Christ

Honors and Professional Recognition
● Russ Outstanding Undergraduate Teaching Award, 1997-1998
● Kraft Family Scholar, 2004-Present
● White Research Award 2006

Memberships
● National Association of Industrial Technology (NAIT)
● Society of Plastics Engineers
● Association of Rotational Molders International
● American Society of Engineer Educators (ASEE)
● Epsilon Pi Tau
Zaki Kuruppalil
Ph.D., Indiana State University
Assistant Professor

Zaki Kuruppalil, PhD is an assistant professor in the Department of Industrial Technology at Ohio University. He received his doctorate in Technology Management (Manufacturing Specialization) and master’s degree in Industrial Technology from Indiana State University, USA. His undergraduate degree is in Mechanical Engineering from University of Kerala, India. He worked as a manufacturing engineer for Smiths Aerospace (currently GE Aviation), USA and Enginetics Aerospace, USA. He also taught at Indiana State University while pursuing his PhD. His research interests include manufacturing management, lean manufacturing, agile manufacturing, manufacturing processes, CNC.

Areas of Expertise
- Lean Manufacturing
- Agile Manufacturing
- Manufacturing Processes
- CNC
- Manufacturing Management

Scholarly Activities

Service
- SME Faculty Advisor

Honors and Professional Recognition
- Material Handling Education Foundation Scholarship, 2006
- Indiana State University Graduate Student Research Fund, 2002, 2006
- NAIT Award for Best Research Poster Presentation, 2007

Memberships
- National Association of Industrial Technology (NAIT)
- Society of Manufacturing Engineers (SME)
Patrick McCuistion
Ph.D., Texas A&M University
Associate Professor

Dr. McCuistion taught at Pittsburg State University and Texas A&M University before joining the Ohio University faculty in 1989. He also has eight years of experience in several different industries. McCuistion’s area of expertise is dimensional management. In this area, he focuses on geometric dimensioning and tolerancing, dimensional analysis, and dimensional metrology. He is the Chairman or member of nine national committees covering engineering drawings and related documents. He has authored and currently teaches three internet based courses on drawing interpretation and geometric dimensioning for The American Society of Mechanical Engineers. In addition to this, McCuistion has given numerous presentations and workshops to manufacturing companies on geometric dimensioning and tolerancing and dimensional analysis.

Areas of Expertise
● Dimensional Management
● Geometric Dimensioning and Tolerancing
● Dimensional Analysis

Scholarly Activities
● Using computer animations in web-based instruction
● Practical applications of geometrical dimensioning and tolerancing

Service
● Chairman, Standards Committee for the Engineering Design Graphics Division of the American Society for Engineering Education
● Served in all officer positions and is the bulletin editor for the Athens Lions Club

Honors and Professional Recognition
● Senior Geometric Dimensioning and Tolerancing Professional - Senior

Memberships
● National Association of Industrial Technology (NAIT)
● American Society for Engineering Educators (ASEE)
Dr. Myers has ten years of experience with Tier I and Tier II manufacturing plants supplying the automotive industry. His responsibilities have included multi-plant materials management, ERP implementation, project management and engineering management. He has been a researcher in the Center for Automatic Identification. Myers instructs subjects that include metal fabricating and casting, manufacturing computer technology, contemporary integrated manufacturing, automatic identification, project management, operations management, and lean enterprise.

Areas of Expertise
- Operations Management
- Lean Operations
- Automatic Identification
- Curriculum Development

Scholarly Activities
- Funded research:
 - Radio Frequency Identification OEM capability studies
 - Barcode robustness studies
 - Manufacturing operations studies
- Presented at:
 - FrontLine Solutions, 2002, 2003, 2004
- Trustee for the Lambda chapter of Epsilon Pi Tau

Service
- Various University and College Committees
- EPT Lambda Chapter Trustee

Honors and Professional Recognition
- Three time recipient of the Marvin E. and Ann D. White Research Award
- Received Commendations from Honda for Leadership two suppliers support study groups

Memberships
- National Association of Industrial Technology (NAIT)
- Epsilon Pi Tau
- Society of Manufacturing Engineers (SME)
- American Society of Engineering Educators (ASEE)
Dr. Scott joined Ohio University in 1993 after 27 years of industrial experience with General Motors Corporation (GMC). His responsibilities with GMC included engineering design and development of gas turbine components, and management of military and commercial projects. During that period, Scott also taught as an adjunct faculty member for ten years in the Manufacturing Engineering Technology Department at Purdue University. At Ohio University, Scott teaches electronics and industrial control, industrial materials, and mechanical power transmission. His areas of professional interest include: control systems, analog and digital electronics and robotics. He is a strong proponent of the development of critical thinking skills and advocates learning by experience as the most effective teaching strategy.

Areas of Expertise
- Industrial Control
- Mechanical Systems

Scholarly Activities

Service
- Past President and Founder of Electricity, Electronics and Computer Technology Division of the National Association of Industrial Technologists

Honors and Professional Recognition
- U.S. Patent No. 4,458,479, July 10, 1984: Diffuser for gas turbine engine
- Russ Outstanding Undergraduate Teaching Award, 1994-1995, and 2002
- The National Association of Industrial Technology Outstanding Professor of Industrial Technology Award, 1999
- Department of Industrial Technology Teaching Award, 1999-2000, 2003, and 2007
- Kraft Family Scholar, July 2000-Present
- Past President, Electricity, Electronics and Computer Technology Division of the National Association of Industrial Technologists

Memberships
- Society Manufacturing Engineers (SME)
- Advisor Student Chapter of SME, 1993-2007
- National Association of Industrial Technology (NAIT)
Timothy Sexton
Ph.D., Ohio University
Professor

Dr. Sexton joined Ohio University in 1985 after eight years of teaching engineering graphics and two and a half years with an architectural and engineering firm. He has conducted research in and presented papers on developing spatial visualization abilities, testing visualization skills, and teaching strategies for engineering graphics using computer technology. Sexton has developed a text designed to be used in an engineering graphics course. The text is accompanied by a set of four different drawing workbooks. Sexton has also developed a series of three different civil engineering graphics assignments. His primary areas of instruction include engineering, civil and architectural graphics, descriptive geometry, and computer-aided design.

Areas of Expertise
- Engineering Graphics
- Computer Graphics
- Architectural Graphics & Descriptive Geometry

Scholarly Activities

Service

Honors and Professional Recognition
- Department of Industrial Technology Teaching Award, 1998
- Russ College of Engineering and Technology Outstanding Teaching Award, 1999

Memberships
- American Society of Engineering Educators (ASEE) – Engineering Graphics Division
- Epsilon Pi Tau
Active Emeriti

James Fales
Ed.D., Texas A&M University
Loehr Professor Emeritus
Founding Director, Center for Automatic Identification

Dr. Fales joined the Ohio University faculty as chair and professor in 1986 after extensive teaching experience at Purdue University and Texas A&M University. He also has five years of experience in industry. Dr. Fales is considered one of the nation’s foremost educational authorities on bar coding and other forms of AIDC, which is his principal research interest. He is a Certified Manufacturing Engineer (CMfgE) and a Certified Enterprise Integrator (CIE).

Scholarly Activities
● Data matrix and PDF 417 data integrity test, Oak Ridge National Laboratory

Honors and Professional Recognition
● Excellence in Teaching Awards, Purdue University, 1982-1985
● Outstanding Alumni Achievement Award, Texas A&M University 1989
● Board of Accreditation, National Assn. of Industrial Technology, 1992-1994
● Loehr Professor, Ohio University, 1993-Present
● Percival Award, Automatic Identification Manufacturers, 1998
● Robe Leadership Award, 2005
● Russ Outstanding Undergraduate Professor, 2006
William Reeves
Ed. D., University of Kentucky
Professor Emeritus

Dr. Reeves joined the Ohio University faculty in 1974 and retired in 2003. He has industrial experience in plastics molding industry and construction. He has written technical works and is the author of five textbooks. Dr. Reeves’ primary teaching areas were fluid power, materials science, and polymer processes. His principal research interests were in fluid power, plastics tooling design, and statistical problem solving.

Sponsored research and sponsors
● Shock Attenuation Devices for Sports Equipment, Zide Enterprises
● The Southeastern Ohio Vocational Personnel Development Center, Ohio Department of Education
● Design/Development of Automated Scaling Devices, Diagnostics Hybrids
● Design/Development of Automated Bar Sorting Machinery, Birmingham Steel

Other Research
● Design/Development of Electro-Mechanical Impregnation and Forming Device
● Flexible Manufacturing Concepts in Plastics Tooling Design
● Role Conflict Resolution in Organizational Management

Honors and Professional Recognition
● University Professor, 1981
● Russ Outstanding Undergraduate Teaching Award, 1982-83, 1986-87
● White Departmental Teaching Award, 1999
● White Departmental Research Award, 2001
John A. Deno
Ph. D., The Ohio State University
Associate Professor Emeritus

Dr. Deno was a full time faculty member of Ohio University for twenty years, retiring in 2005, currently teaching part time in the Department of Industrial Technology. In addition to previously teaching metal machining for fifteen years, he had five years of industrial experience in metal machining and fabrication before joining the faculty at Ohio University in 1985. His research interests focus on metal machining with an emphasis on machine capability, super-abrasive tooling applications, CNC programming and CAD/CAM. He has given several presentations and workshops on CAD/CAM and super-abrasive tooling applications.

Sponsored research and sponsors
- Effects of Temperature on the Machining of Metals; sponsored by NSF and the University of Kentucky
- Diamond Tool Testing & Bench marking; sponsored by Tempo Diamond Corp.

Industrial Partnerships
- Partnership for Manufacturing Productivity (PMP) with the General Electric Superabrasives and the Industrial Diamond Association of America, Inc.

Service
- Past chairman of the Mid-Ohio Valley chapter of the Society of Manufacturing Engineers
- Served as student advisor for the Ohio University student chapter of the Society of Manufacturing Engineers (SME)
- Presently proctors the SME Certification Exam for Ohio University students.

Honors, Awards, and Distinctions
- Fritz and Dolores Russ Outstanding Undergraduate Teaching Award, Ohio University, 1992 & 2004
- White Outstanding Teaching Award, Ohio University, 2001 & 2005
- White Outstanding Research Award, Ohio University, 2004
Recent Past Employees

Mark Rowe
MS, Ohio University
Mr. Rowe has more than 15 years of work experience with Fortune 500 companies such as Lockheed-Martin, MCI/UUNET, and Qwest Communications. He offered his students a practical approach to problem solving and product delivery. Specializing in information systems and telecommunications, Rowe also serves as a part-time consultant to the telecommunications industry. In this work, he develops software that integrates Internet technology with telecommunications systems. This software enables such products as Web-based conferencing, speech recognition, text-to-speech, and voiceover Internet products. Rowe taught courses in areas such as computer applications, manufacturing computer technology, object oriented programming, and manufacturing database applications.

Carol Stout
Administrative Associate
Mrs. Stout was the administrative associate for IT, and had been employed by the department since 1985. She was the recipient of the Russ College of Engineering and Technology Outstanding Employee Award in 2004. Before taking the IT position, Ms. Stout held various other positions on campus. Prior to working at Ohio University, she was employed by Civil Service and worked for the U.S. Army, performing secretarial duties at various eastern U.S. bases.
Generous Benefactors

The Russ College of Engineering and Technology is housed in Stocker Center, thanks to the generosity of the Russ and Stocker families. Their generosity has greatly impacted the college, university, and most importantly, thousands of students.

The Fritz J. and Dolores H. Russ College of Engineering and Technology was so named in 1994 in honor of the late Fritz Russ, a 1942 electrical engineering graduate, and his wife, Dolores. Fritz was an inventor and entrepreneur and, with his wife, founded a very successful business, Systems Research Laboratories (SRL), which grew into one of the world’s largest and most productive, independent engineering and technology research firms. “Fritz Russ was not only a great friend and benefactor of Ohio University - it is surely true that his influence on engineering education in Ohio, and indeed, the nation, ranks with that of the founders of our country’s original engineering programs,” said Dennis Irwin, Russ College dean.

Paul Stocker, a 1926 electrical engineering graduate, credited his success to knowledge he acquired while attending Ohio University. At his bequest, the college received eight million dollars upon his death in 1978 and in appreciation, the university named the newly remodeled building the C. Paul and Beth K. Stocker Center of Engineering and Technology. President Emeritus Charles Ping said: “I think the trust of Paul and Beth Stocker opened the future of the College of Engineering and Technology and the university with their remarkable gifts. Things have happened that would have given him great delight.” His wife Beth continued to actively support the college until her death in 2005.
Now that you are familiar with our HISTORY, would you like to be part of our FUTURE?

If you are interested in making a donation to ensure our continued success, please send your gift to:

The Ohio University Foundation
P.O. Box 869
Athens, OH 45701

Be sure to designate your gift to:
Industrial Technology